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Abstract. Living cells are extremely well-organized autonomous systems, consisting of discrete 
interacting components. Key to understanding and modeling their behavior is modeling their 
system organization. Four distinct chemical toolkits (classes of macromolecules) have been 
characterized, each combinatorial in nature. Each toolkit consists of a small number of simple 
components that are assembled (polymerized) into complex structures that interact in rich ways. 
Each toolkit abstracts away from chemistry; it embodies an abstract machine with its own 
instruction set and its own peculiar interaction model. These interaction models are highly 
effective, but are not ones commonly used in computing: proteins stick together, genes have fixed 
output, membranes carry activity on their surfaces. Biologists have invented a number of notations 
attempting to describe, abstractly, these abstract machines and the processes they implement. 
Moving up from molecular biology, systems biology aims to understand how these interaction 
models work, separately and together.   

1 Introduction 
Following the discovery of the structure of DNA, just over 50 years ago, molecular biologists 
have been unraveling the functioning of cellular components and networks. The amount of 
molecular-level knowledge accumulated so far is absolutely amazing. And yet we cannot say 
that we understand how a cell works, at least not to the extent of being able to easily modify 
or repair a cell. The process of understanding cellular components is far from finished, but it 
is becoming clear that just obtaining a full part list will not tell us how a cell works. Rather, 
even for substructures that have been well characterized, there are significant difficulties in 
understanding how components interact as a system to produce the observed behavior. 
Moreover, there are just too many components, and too few biologists, to analyze each 
component in depth in reasonable time. Similar arguments apply also to each level of 
biological organization above the cellular level. 

Enter systems biology, which has two aims. The first is to obtain massive amounts of 
information about whole biological systems, via high-throughput experiments that provide 
relatively shallow and noisy data. The Human Genome Project is a prototypical example: the 
knowledge it accumulated is highly valuable, and was obtained in an automated and relatively 
efficient way, but is just the beginning of understanding the human genome. Similar effort are 
now underway in genomics (finding the collection of all genes, for many genomes), in 
transcriptomics (the collection of all actively transcribed genes), in proteomics (the collection 
of all proteins), and in metabolomics (the collection of all metabolites). Bioinformatics is the 
rapidly growing discipline tasked with collecting and analyzing such omics data.  

The other aim of systems biology is to build, with such data, a science of the principles of 
operation of biological systems, based on the interactions between components. Biological 
systems are obviously well-engineered: they are very complex and yet highly structured and 
robust. They have only one major engineering defect: they have not been designed, in any 
standard sense, and so are not laid out as to be easily understood. It is not clear that any of the 
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engineering principles of operations we are currently familiar with are fully applicable. 
Understanding such principles will require an interdisciplinary effort, using ideas from 
physics, mathematics, and computing. Here, then, are the promises of systems biology: it will 
teach us new principles of operation, likely applicable to other sciences, and it will leverage 
other sciences to teach us how cells work in an actionable way. 

In this paper, we look at the organization of biological systems from an information 
science point of view. The main reason is quite pragmatic: as we increasingly map out and 
understand the complex interactions of biological components, how can we write down such 
knowledge, in such a way that we can inspect it, animate it, and understand its principles? For 
genes, we can write down long but structurally simple strings of nucleotides in a 4-letter 
alphabet, that can be stored and queried. For proteins we can write down strings of amino 
acids in a 20-letter alphabet, plus three-dimensional information, which can be stored a 
queried with a little more difficulty. But how shall we write down biological processes, so 
that they can be stored and queried? It turns out that biologists have already developed a 
number of informal notation: these will be our starting points. These notations are abstractions 
over chemistry or, more precisely, are abstractions over a number of biologically relevant 
chemical toolkits. 

2 Biochemical Toolkits 
Apart from small molecules such as water and some metabolites, there are four large classes 
of macromolecules in a cell. Each class is formed by a small number of units that can be 
combined systematically to produce structures of great complexity. That is, to produce both 
individual molecules of essentially unbounded size, and multi-molecular complexes.  

The four classes of macromolecules are as follows. Different members of each class can 
have different functions (structure, energy storage, etc.). We focus on the most combinatorial, 
information-bearing, members of each class: 

 
• Nucleic acids. Five kinds of nucleotides combine in ordered sequences to form two 

nucleic acid polymers: DNA and RNA. As data structures, RNA is lists, and DNA is 
doubly-linked lists. Their most prominent role is in coding information, although they 
also have other important functions. 

• Proteins. About 20 kinds of amino acids combine linearly to form proteins. Each protein 
folds in a specific three-dimensional shape (sometimes from multiple strings of amino 
acids). The main and most evolutionary stable property of a protein is not the exact 
sequence of amino acids that make it up, nor the exact folding process, but its collection 
of surface features that determine its function. As data structures, proteins are records of 
features and, since these features are often active and stateful, they are objects in the 
object-oriented programming sense. 

• Lipids: Among the lipids, phospholipids have a modular structure and can self-assemble 
into closed double-layered sheets (membranes). Membranes differ in the proportion and 
orientation of different phospholipids, and in the kinds of proteins that are attached to 
them. As data structures, membranes are containers, but with an active surface that acts 
as an interface to its contents. 

• Carbohydrates: Among the carbohydrates, oligosaccharides are sugars linked in a 
branching structure. As data structures, oligosaccharides are trees. They have a vast 
number of configurations, and a complex assembly processes. Polysaccharides form even 
bigger structures, although usually of a semi-regular kind (rods, meshes). We do not 
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consider carbohydrates further, although they are probably just as rich and interesting as 
the other toolkits. They largely have to do with energy storage and with cell surface and 
extracellular structures. But it should be noted that they too have a computational role, in 
forming unique surface structures that are subject to recognition. Many proteins are 
grafted with carbohydrates, through a complex assembly process called glycosylation. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Eukaryotic Cell 
Eukaryotic cells have an extensive array of membrane-bound compartments and organelles with up to 4 
levels of nesting. The nucleus is a double membrane. The external membrane is less than 10% of the total. 
 

Out of these four toolkits arises all the organic chemicals, composing, e.g., eukaryotic 
cells (Figure 1, [31] p.1). Each toolkit has specific structural properties (as emphasized by the 
bolded words above), systematic functions, and a peculiarly rich and flexible mode of 
operation. These peculiar modes of operation and systematic functions are what we want to 
emphasize, beyond their chemical realization.  

Cells are without doubt, in many respects, information processing devices. Without 
properly processing information from their environments, they soon die for lack of nutrients 
or for predation. Moreover, the blueprint of a cell, needed for its functioning and 
reproduction, is stored as digital information in the genome, and an essential step of 
reproduction is the copying of that digital information. We could say that cells are chemistry 
that also does some information processing. But we take a more extreme positions; cells are 
chemistry in the service of information processing. Hence, we should look for information 
processing machinery within the cellular machinery, and we should try and understand the 
functioning of the cell in terms of information processing, instead of chemistry. Fortunately, 
we can readily find such information processing machinery in the chemical toolkits that we 
just described, and we can switch fairly smoothly from the classical description of cellular 
functioning in terms of classes of macromolecules, to a description based on abstract 
information-processing machines. 
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H.Lodish, A.Berk, S.L.Zipursky, P.Matsudaira, D.Baltimore, J.Darnell. 
Molecular cell biology. Fourth Edition.
Freeman 2002.
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3 Abstract Machines 
An abstract machine is a fictional information-processing device that can, in principle, have a 
number of different physical realizations (mechanical, electronic, biological, or even 
software). An abstract machine is characterized by: 
 

• a collection of discrete states 
• a collection of operations (or events) that cause discrete transitions between states 

 

The evolution of states through transitions can in general happen concurrently. The adequacy 
of this generic model for describing complex systems is argued, e.g., in [22]. 
 

Each of the chemical toolkits we have just described can be seen as a separate abstract 
machine with an appropriate set of states and operations. This abstract interpretations of 
chemistry is by definition fictional, and one must be aware of its limitation. However, one 
must also be aware of the limitations of not abstracting, because then we are in general limited 
to work at the lowest level of reality (quantum mechanics) without any hope of understanding 
higher principles of organization. The abstract machines we consider are each grounded in a 
different chemical toolkit (nucleotides, amino acids, and phospholipids), and hence have some 
grounding in reality. Moreover, each abstract machine corresponds to a different kind of 
informal algorithmic notation that biologists have developed  (Figure 2, bubbles): this is 
further evidence that abstract principles of organization are at work. 

The Gene Machine (better known as Gene Regulatory Networks) performs information 
processing tasks within the cell. It regulates all other activities, including assembly and 
maintenance of the other machines, and the copying of itself. The Protein Machine (better 
known as Biochemical Networks) performs all mechanical and metabolic tasks, and also some 
signal processing. The Membrane Machine (better known as Transport Networks) separates 
different biochemical environments, and also operates dynamically to transport substances via 
complex, discrete, multi-step processes. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Abstract Machines, Molecular Basis, and Notations 
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These three machines operate in concert and are highly interdependent. Genes instruct the 

production of proteins and membranes, and direct the embedding of proteins within 
membranes. Some proteins act as messengers between genes, and others perform various 
gating and signaling tasks when embedded in a membrane. Membranes confine cellular 
materials and bear proteins on their surfaces. In eukaryotes, membranes confine the genome, 
so that local conditions are suitable for regulation, and confine other reactions carried out by 
proteins in specialized vesicles.  

Therefore, to understand the functioning of a cell, one must understand also how the 
various machines interact. This involves considerable difficulties (e.g. in simulations) because 
of the drastic difference in time and size scales: proteins interacts in tiny fractions of a second, 
while gene interactions take minutes; proteins are large molecules, but are dwarfed by 
chromosomes, and membranes are larger still. Before looking at the interactions among the 
different machine in more detail, we start by discussing each machine separately. 

4 The Protein Machine (Biochemical Networks) 

4.1 Principles of Operation 

Proteins are long folded-up strings of amino acids with precisely determined, but often 
machanically flexible, three-dimensional. If two proteins have surface regions that are 
complementary (both in shape and in charge), they may stick to each other like Velcro, 
forming a protein complex where a multitude of small atomic forces crates a strong bond 
between individual proteins. They can similarly stick highly selectively to other substances. 
During a complexation event, a protein may be bent or opened, thereby revealing new 
interaction surfaces. Through complexation many proteins act as enzymes: they bring together 
compounds, including other proteins, and greatly facilitate chemical reactions between them 
without being themselves affected.  

Proteins may also chemically modify each other by attaching or removing small 
phosphate groups at specific sites. Each such site acts as a boolean switch: over a dozen of 
them can be present on a single protein. Addition of a phosphate group (phosphorilation) is 
performed by an enzyme that is then called a kinase. Removal of a phosphate group 
(dephosphorilation) is performed by an enzyme that is then called a phosphatase. For 
example, a protein phosphatase kinase kinase is a protein that phosphorilates a protein that 
phosphorilates a protein that dephosphorilates a protein. Each (de-)phosphorilation may reveal 
new interaction surfaces, and each surface interaction may expose new phosphorilation sites. 

It turns out that a large number of protein interactions work at the level of abstraction just 
described. That is, we can largely ignore chemistry and the protein folding process, and think 
of each protein as a collection of features (binding sites and phosphorilation sites) whose 
availability is affected by (de-)complexation and (de-)phosphorilation interactions. This 
abstraction level is emphasized in Kohn’s Molecular Interaction Maps graphical notation 
[28][26]. 

We can describe the operation of the protein machine as follows (Figure 3). Each protein 
is a collection of sites and switches; each of those can be, at any given time, either available 
or unavailable. Proteins can join at matching sites, to form bigger and bigger complexes. The 
availability of sites and switches in a complex is the state of the complex. A system is a 
multiset of (disjoint) complexes, each in a given state.  
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The protein machine has two kinds of operations. (1) An available switch on a complex 
can be turned on or off, resulting in a new state where a different collection of switches and 
sites is available. (2) Two protein complexes can combine at available sites, or one complex 
can split into two, resulting in a new state where a different collection of switches and sites is 
available. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 The Protein Machine Instruction Set 
 

Who is driving the switching and binding? Other proteins do. There are tens of thousands 
of proteins in a cell, so the protein machine has tens of thousands of “primitive instructions”; 
each with a specific way of acting on other proteins (or metabolites). In practice, one 
describes smaller cellular subsystem; for such a subsystem one must list the proteins, and how 
each protein interacts with the other proteins in terms of switching and binding and modifying 
the available sets of switches and sites.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4 Molecular Interaction Maps Notation 
From [28]. �: graphical primitives. �: complexation and phosphorilation. �: enzymatic diagram and 
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equivalent chemical reactions. �: map of the p53-Mdm2 and DNA Repair Regulatory Network. 
 

4.2 Notations 

Finding a suitable language in which to cast such an abstraction is a non-trivial task. Kohn 
designed a graphical notation, resulting in pictures such as Figure 4 [28]. This was 
tremendous achievement, summarizing hundreds of technical papers in page-sized pictures, 
while providing a sophisticated and expressive notation that could be (according to semi-
formal guidelines) translated back into chemical equations. Because of this intended chemical 
semantics, the dynamics of a systems is implied in Kohn’s notation, but only by translation to 
chemical (and hence kinetic) equations. The notation itself has no dynamics, and this is one of 
its main limitation. The other major limitation is that, although a graphical notation is very 
appealing, it tends to stop being useful when it overflows the borders of a page or of a 
whiteboard (the original Kohn maps span several pages). 

Other notations for the protein machine can be devised. Kitano, for example, improves on 
the conciseness, expressiveness, and precision of Kohn’s notation [27]; further sophistication 
in graphical notation will certainly be required along the general principles of [18]. A 
different approach is to devise a textual notation, which inherently has no “page-size” limit 
and can better capture dynamics; examples are Bio-calculus [36], and most notably κ-calculus 
[14][15], whose dynamics is fully formalized. But one may not need to invent completely new 
formalisms. Regev and Shapiro, in pioneering work [46][44], described how to represent 
chemical and biochemical interactions within existing process calculi (π-calculus). Since 
process calculi have a well understood dynamics (better understood, in fact, than most textual 
notations that one may devise just for the purpose), that approach also provides a solid basis 
for studying systems expressed in such a notation. Finally, some notations incorporate both 
continuous and discrete aspects, as in Charon [3]. 

4.3 Example: MAPK Cascade 

The relatively simple Kohn map in Figure 5 (adapted from [25]) describes the behavior of a 
circuit that causes Boolean-like switching of an output signal in presence of a very weak input 
signal. (It can also be described as a list of 10 chemical reactions, or of 25 differential/ 
algebraic equations, but then the network structure is not so apparent.) This network, 
generically called a MAPK cascade, has multiple biochemical implementations and 
variations. The components are proteins (enzymes, kinases, phophatases, and intermediaries). 
The circle-arrow Kohn symbol for “enzyme-assisted reaction” can signify here either a 
complexation that facilitates a reaction, or a phosphorilation/dephosphorilation, depending on 
the specific proteins. 

 
 

 
 

 
 

Figure 5 MAPK Cascade 
 

 The system initially contains reservoirs of chemicals KKK, KK, and K (say, 100 
molecules each), which are transformed by the cascade into the kinases KKK*, KK-PP, and 
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K-PP respectively. Enzymes E2, KK-Phosphatase and K-Phosphatase are always available 
(say, 1 molecule each), and tend to drive the reactions back. Appearance of the input enzyme 
E1 in very low numbers (say, less than 5) causes a sharp (Boolean-like 0-100) transition in the 
concentration of the output K-PP. The concentrations of the intermediaries KK-PP, and 
especially KKK*, raise in a much smoother (non-Boolean-like) fashion. Given the above 
concentrations, the network works fine by setting all reaction rates to equal values. 

To notice here is that the detailed description of each of the individual proteins, with their 
folding processes, surface structures, interaction rates under different conditions, etc. could 
take volumes. But what makes this signal processing network work is the structure of the 
network itself, and the relatively simple interactions between the components.  

4.4 Summary 

The fundamental flavor of the Protein Machine is: fast synchronous binary interactions. 
Binary because interactions occur between two complementary surfaces, and because the 
likelihood of three-party instantaneous chemical interactions can be ignored. Synchronous 
because both parties potentially feel the effect of the interaction, when it happens. Fast 
because individual chemical reactions happen at almost immeasurable speeds. The parameters 
affecting reaction speed, in a well-stirred solution, are just a reaction-specific rate constant 
having to do with surface affinity, plus the concentrations of the reagents (and the temperature 
of the solution, which is usually assumed constant). Concentration affects the likelihood of 
molecules randomly finding each other by Brownian motion. Note that Brownian motion is 
surprisingly effective at a cellular scale: a molecule can “scan” the entire volume of a bacteria 
for a match in 1/10 of a second, and it will in fact scan the entire volume because random 
paths in 3D do not return to the origin. 

5 The Gene Machine (Gene Regulatory Networks) 

5.1 Principles of Operation 

The central dogma of molecular biology states that DNA is transcribed to RNA, and RNA is 
translated to proteins (and then proteins do all the work). This dogma no longer paints the full 
picture, which has become considerably more detailed in recent years. Without entering into a 
very complex topic, let us just note that some proteins go back and bind to DNA. Those 
proteins are called transcription factors (either activators or repressors); they are produced 
for the purpose of allowing one gene (or signaling pathway) to communicate with other genes. 
Transcription factors are not simple messages: they are proteins, which means they are subject 
to complexation, phosphorilation, and programmed degradation, which all have a role in gene 
regulation. 

A gene is a stretch of DNA consisting of two (not necessarily contiguous or unbroken) 
regions: an input (regulatory) region, containing protein binding sites (for transcription 
factors) and an output (coding) region, coding for one or more proteins that the gene 
produces. Sometimes there are two coding regions, in opposite directions [43], on count of 
DNA being a doubly-linked list. Sometimes two genes overlap on the same stretch of DNA.  

The output region functions according to the genetic code: a well understood and almost 
universal table mapping triplets of nucleotides to one of about 20 amino acids, plus start and 
stop triplets. The input region functions according to a much more complex code that is still 
poorly understood: transcription factors, by their specific 3D shapes, bind to specific 
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nucleotide sequences in the input region, with varying binding strength depending of the 
precision of the match.  

Thus, the gene machine, although entirely determined by the digital information coded in 
DNA, is not entirely digital in functioning: a digitally encoded protein, translated and folded-
up, uses its “analog” shape to recognize another digital string and promote the next step of 
translation. Nonetheless, it is customary to ignore the details of this process, and simply 
measure the effectiveness with which (the product of) a gene affects another gene. This point 
of view is reflected in standard notation for gene regulatory networks (Figure 7). 

 
   

 
 

 
 
 

Figure 6 The Gene Machine Instruction Set 
 

In Figure 6, a gene is seen as a hardware gate, and the genome can be seen as a vast 
circuit composed of such gates. Once the performance characteristics of each gate is 
understood, one can understand or design circuits by combining gates, almost as one would 
design digital or analog hardware circuits. The performance characteristics of each gene in a 
genome is probably pretty unique. Hence, as in the protein machine, we are going to have 
thousands of “primitive instructions”: one for each gene.  

A peculiarity of the gene machine is that a set of gates also determines the network 
connectivity. This is in contrast with a hardware circuit, where there is a collection of gates 
out of a very small set of “primitive gates”, and then a separate wiring list. Each gene has a 
fixed output; the protein the gene codes for (although post-processing may vary such output). 
Similarly, a gene has a fixed input: the fixed set of binding sites in the input region. Therefore, 
by knowing the nucleotide sequence of each gene in a genome, one (in principle) also knows 
the network connectivity without further information. This situation is similar to a software 
assembly-language program: “Line 3: Goto Line 5” where both the input and output addresses 
are fixed, and the flow graph is determined by the instructions in the program. However, a 
further difference is that the output of a gene is not the “address” of another gene: it is a 
protein that can bind with varying strength to a number of other genes. 

The state of a gene machine is the concentrations of the transcription factors produced by 
each gene (or arriving from the environment). The operations, again, are the input-output 
functions of each gene. But what is the “execution” of a gene machine? It is not as simple as 
saying that one gene stimulates or inhibits another gene by a certain factor. It is known that 
certain genes perform complex computations on their inputs that are a mixture of boolean, 
analog, and multi-stage operators (Figure 7-B [50]). Therefore, the input region of each gene 
can itself be a sophisticated machine. 

Whether the execution of a gene machine should be seen as a continuous or discrete 
process, both in time and in concentration levels, is already a major question. Qualitative 
models (e.g.: asynchronous automata [48], network motifs [34]) can provide more insights 
that quantitative models, whose parameters are hard to come by and are possibly not critical. 
On the other hand, it is understood that pure boolean models are inadequate in virtually all 
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real situations. Continuous, stochastic, and decay aspect of transcription factor concentrations 
are all critical in certain situations [32][49]. 

5.2 Notations 

Despite all these difficulties and uncertainties, a single notation for the gene machine is in 
common use, which is the gene network notation of Figure 7-A. There the gates are connected 
by either “excitatory” (pointed arrow) or “inhibitory” (blunt arrow) links. What that might 
mean exactly is often left unspecified, except that, in a common model, a single constant 
weight is attached to each link.  

Any serious publication would actually start from a set of ordinary differential equations 
relating concentrations of transcription factors, and use pictures such at Figure 7-A only for 
illustration, but this is only feasible for small networks. The best way to formalize the 
notation of gene regulatory networks is still subject to debate and many variations, but there is 
little doubt that formalizing such a notation will be essential to get a grasp on gene machines 
the size of genomes (the smallest of which, M.Genitalium, is on the order of 150 Kilobytes, 
and one closer to human cellular organization, Yeast, is 3 Megabytes). 

 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Gene Regulatory Networks Notation 
� [16]: gene regulatory network involved in sea urchin embryo development: � [50]: boolean/arithmetic 
diagram of module A, the last of 6 interlinked modules in the regulatory region of the endo16 sea urchin 
gene; G,F,E,DC,B are module outputs feeding into A, the whole region is 2300 base pairs. 
 

5.3 Example: Repressilator 

The circuit in Figure 8, artificially engineered in E.Coli bacteria [19], is a simple oscillator 
(given appropriate parameters). It is composed on three genes with single input that inhibit 
each other in turn. The circuit gets started by constitutive transcription: each gene 
autonomously produces output in absence of inhibition. The produced output decays at a 
certain stochastic rate. The symmetry of the circuit is broken by the underlying stochastic 
behavior of chemical reactions.  
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Assume that gene a is at some point not inhibited (i.e. the product B of gene b is absent). 
Then gene a produces A, which shuts down gene c. Since gene c is no longer producing C, 
gene b eventually starts producing B, which shuts down gene a. And so on.  

 
 

 
 

Figure 8 Repressilator Circuit 
 

5.4 Summary 

The fundamental flavor of the Gene Machine is: slow asynchronous stochastic broadcast. The 
interaction model is really quite strange, by computing standards. Each gene has a fixed 
output, which is not quite an address for another gene: it may bind to a large number of other 
genes, and to multiple locations on each gene. The transcription factor is produced in great 
quantities, usually with a well-specified time-to-live, and needs to reach a certain threshold to 
have an effect. On the other hand, various mechanisms can guarantee Boolean-like switching 
when the threshold is crossed, or, very importantly, when a message is not received. 
Activation of one gene by another gene is slow by any standard: typically one to five minutes, 
to build up the necessary concentration1. However, the genome can slowly direct the 
assembly-on-need of protein machines that then act fast: this “swap time” is seen in 
experiments that switch available nutrients. The stochastic aspect is fundamental because, 
e.g., with the same parameters, a circuit may oscillate under stochastic/discrete semantics, but 
not under deterministic/continuous semantics [49]. One reason is that a stochastic system may 
decay to zero molecules of a certain kind at a given time, and this can cause switching 
behavior, while a continuous system may asymptotically decay only to a non-zero level. 

6 The Membrane Machine (Transport Networks) 

6.1 Principles of Operation 

A cellular membrane is an oriented closed surface that performs various molecular functions. 
Membranes are not just containers: they are coordinators and sites of major activity2. Large 
functional molecules (proteins) are embedded in membranes with consistent orientation, and 
can act on both sides of the membrane simultaneously. Freely floating molecules interact with 
membrane proteins, and can be sensed, manipulated, and pushed across by active molecular 
channels. Membranes come in different kinds, distinguished mostly by the proteins embedded 
in them, and typically consume energy to perform their functions. The consistent orientation 
of membrane proteins induces an orientation on the membrane.  

One of the most remarkable properties of biological membranes is that they form a two-
dimensional fluid (a lipid bilayer) embedded in a three-dimensional fluid (water). That is, 
both the structural components and the embedded proteins freely diffuse on the two-
dimensional plane of the membrane (unless they are held together by specific mechanisms). 

                                                 
1 Consider that bacteria replicate in only 20 minutes while cyclically activating hundreds of genes. It seems that, 
at lest for bacteria, the gene machine can make “wide” but not very “deep” computations [34]. 
2 “For a cell to function properly, each of its numerous proteins must be localized to the correct cellular 
membrane or aqueous compartment.” [31] p.675. 
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Moreover, membranes float in water, which may contain other molecules that freely diffuse in 
that three-dimensional fluid. Membrane themselves are impermeable to most substances, such 
as water and protons, so that they partition the three-dimensional fluid. This organization 
provides a remarkable combination of freedom and structure. 

 
   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 The Membrane Machine Instruction Set (2D) 
 

Many membranes are highly dynamic: they constantly shift, merge, break apart, and are 
replenished. But the transformations that they support are naturally limited, partially because 
membranes must preserve their proper orientation, and partially because membrane 
transformations need to be locally-initiated and continuous. For example, it is possible for a 
membrane to gradually buckle and create a bubble that then detaches, or for such a bubble to 
merge back with a membrane. But it is not possible for a bubble to “jump across” a membrane 
(only small molecules can do that), of for a membrane to turn itself inside-out. 

The basic operations on membranes, implemented by a variety of molecular mechanisms, 
are local fusion (two patches merging) and local fission (one patch splitting in two) [8]. We 
discuss first the 2D case (which is instructive, and for which there are some formal notations) 
and then the 3D case (the real one, for which there are no formal notations). 

In two dimensions (Figure 9), at the local scale of membrane patches, fusion and fission 
become indistinguishable as a single operation, switch, that takes two membrane patches, i.e. 
to segments A-B and C-D, and switches their connecting segments into A-C and B-D 
(crossing is not allowed). We may say that, in 2D, a switch is a fusion when it decreases the 
number of whole membranes, and is a fission when it increases such number. 

When seen on the global scale of whole 2D membranes, switch induces four operations: 
in addition to the obvious merging (Mate) and splitting (Mito) of membranes, there are also 
operation, quite common in reality, that cause a membrane to “eat” (Endo) or “spit” (Exo) 
another subsystem. Note that Mito/Mate preserve the nesting depth of subsystems, and hence 
they cannot encode Endo/Exo; instead, Endo/Exo can encode Mito/Mate [12]. There are 
common special cases of Endo and Mito, when the subsystem consists of zero or one 
membrane. All these operations preserve bitonality (dual coloring); that is, if a subsystem P is 
on a blue (or white) background before a reaction, it will be on a blue (or white) background 
after the reaction. Bitonality is related to preservation of membrane orientation, and to locality 
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of operations (a membrane jumping across another one does not preserve bitonality). Bitonal 
operations ensure that what is or was outside the cell (white) never gets mixed with what is 
inside (blue). The main reactions that violate bitonality are destructive and non-local ones 
(such a digestion, not shown). 
  
 

 
 

 
 
 
 
 

 
Figure 10 The Membrane Machine Instruction Set (3D) 

Each row consists of initial state, two intermdiate states, and final state (and back). 
 

In three dimensions, the situation is more complex (Figure 10). There are 2 distinct local 
operations on surface patches, inducing 8 distinct global operations that change surface 
topology. Fusion joins two Positively curved patches (in the shapes of domes) into one 
Negatively curved patch (in the shape of a hyperbolic cooling tower) by allowing the P-
patches to kiss and merge. Fission instead splits one N-patch into two P-patches by pinching 
the N-patch. Fusion does not necessarily decrease the number of membranes in 3D (it may 
turn a sphere into a torus in two different ways: T-Endo T-Mito), and Fission does not 
necessarily increase the number of membranes (it may turn a torus into a sphere in two 
different ways: T-Exo, T-Mate). In addition, Fusion may merge two spheres into one sphere 
in two different ways (S-Exo, S-Mate), and Fission may split one sphere into two spheres in 
two different ways (S-Endo, S-Mito). Note that S-Endo and T-Endo have a common 2D cross 
section (Endo), and similarly for the other three pairs. 

Cellular structures have very interesting dynamic topologies: the eukaryotic nuclear 
membrane, for example, is two nested spheres connected by multiple toroidal holes (and also 
connected externally to the Endoplasmic Reticulum). This whole structure is disassembled, 
duplicated, and reassembled during cellular mitosis. Developmental processes based on 
cellular differentiation are also within the realm of the Membrane Machine, although 
geometry, in addition to topology, is an important factor there. 

6.2 Notations 

The notation used to describe executions of the Membrane Machine does not really have a 
name, but it can be seen in countless illustrations (e.g., Figure 11, [31] p.730). All the stages 
of a whole process can be seen in a single snapshot, with arrows denoting operations 
(Endo/Exo etc.) that cause transitions between states. This kind of depiction is natural because 
often all the stages of a process are seen at once, in photographs, and much of the 
investigation has to do with determining their proper sequence and underlying mechanisms. 
These pictures are usually drawn in two colors, which is a hint of the semantic invariant we 
call bitonality. 
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Figure 11 Transport Networks Notation 
LDL particle (left) is recognized, ingested, and transported to a lysosome vesicle (right). [31], p.730. 
 

Some membrane-driven processes are semi-regular, and tend to return to something 
resembling a previous configuration, but they are also stochastic, so no static picture or finite-
state-automata notation can tell the real story. Spectacular membrane dynamics can be found 
in the protein secretion pathway, through the Golgi system, and in many developmental 
processes. Here too there is a need for a precise dynamic notation that goes beyond static 
pictures. The are only a few of those, currently [40][45][12]. 

6.3 Example: LDL Cholesterol Degradation 

The membrane machine runs real algorithms: Figure 11 depicts LDL-cholesterol degradation. 
The “problem” this algorithm solves is to transport a large object (an LDL particle) to an 
interior compartment where it can be degraded; the particle is too big to just cross the 
membrane. The “solution”, by a precise sequence of discrete steps and iterations, is to use 
proteins embedded in the external cellular membrane and in the cytosol to recognize, bind, 
incorporate, and transport the particle inside vesicles to the desired compartment, all along 
recycling the active proteins. 

6.4 Summary 

The fundamental flavor of the Membrane Machine is: fluid-in-fluid architecture, membranes 
with embedded active elements, and fusion and fission of compartments preserving bitonality. 
Although dynamic compartments are common in computing, operations such as endocytosis 
and exocytosis have never explicitly been suggested as fundamental. They embody important 
invariants that help segregate cellular materials from environmental materials. The distinction 
between active elements embedded on the surface of a compartment, vs. active elements 
contained in the compartment, becomes crucial with operations such as Exo. In the former 
case, the active elements are retained, while in the latter case they are lost to the environment. 

7 Three Machines, One System 

7.1 Principles of Operation 

We have discussed how three classes of chemicals, among others, are fundamental to cellular 
functioning: nucleotides (nucleic acids), amino acids (proteins), and phospholipids 
(membranes). Each of our abstract machines is based primarily on one of these classes of 
chemicals: amino acids for the protein machine, nucleotides for the gene machine, and 
phospholipids for the membrane machine.  
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H.Lodish et al.
Molecular cell biology. Fourth Edition.
Freeman 2002. page 730.
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These three classes of chemicals are however heavily interlinked and interdependent. 
Some enzyme are actually made of nucleotides (RNA) instead of amino acids, or by a 
combination of both. The gene machine “executes” DNA to produce proteins (through RNA 
intermediaries), but some of those proteins (and some RNA), which have their own dynamics, 
are then used as control elements of DNA transcription. Membranes are fundamentally sheets 
of pure phospholipids, but in living cells they are heavily doped with embedded proteins 
which modulate membrane shape and function. Some RNA translation happens only through 
membranes, with the RNA input on one side, and the protein output on the other side or 
threaded into the membrane. 

Therefore, the abstract machines are interlinked as well, as illustrated in Figure 2. 
Ultimately, we will need a single notation in which to describe all three machines (and more), 
so that a whole organism can be described.  

7.2 Notations 

What could a single notation for all three machines (and more) look like? All formal notations 
known to computing, from Petri Nets to term-rewriting systems, have already been used to 
represent aspects of biological systems; we shall not even attempt a review here. But none, we 
claim, has shown the breadth of applicability and scalability of process calculi [33], partially 
because they are not a single notation, but a coherent conceptual framework in which one can 
derive suitable notations. There is also a general theory and notation for such calculi [35], 
which can be seen as the formal umbrella under which to unify different abstract machines. 

Major progress in using process calculi for describing biological systems was achieved in 
[44], where it is argued that one of the standard existing process calculi, π-calculus, enriched 
with a stochastic semantics [24][41][42], is extraordinarily suitable for describing both 
molecular-level interactions and higher levels of organization. The same stochastic calculus is 
now being used to describe genetic networks [29]. For membrane interactions, though, we 
need something beyond ordinary process calculi, which have no notion of compartments. 
Already [44][45] adapted Ambient Calculus [13] (which extends π-calculus) to represent 
biological compartments and complexes. A more recent attempt, Brane Calculus [12], embeds 
the biological invariants and 2D operations from Section 6.  

These experiences point at process calculi as, at least, one of the most promising 
notational frameworks for unifying different aspects of biological representation. In addition, 
the process calculus framework is generally suitable for relating different levels of 
abstractions, which is going to be essential for feasibly representing biological systems of 
high architectural complexity. 

Figure 12 gives a hint of the difference in notational approach between process calculi 
and more standard notations. We should first stress the chemical notation is a process calculus 
notation: it is a calculus of chemical processes. But it is a notation that focuses on reactions 
instead of components. This becomes a disadvantage when components have rich structure 
and a large state space (like proteins). In chemical notation one describes each state of a 
component as a different chemical species (Na, Na+), leading to an exponential blowup in the 
description of interactions (the blowup carries over to related descriptions in terms of 
differential equations). In process calculus notation, instead, the components are central, and 
the reactions (e!-e?) come from the interactions of the components, leading to a blowup in the 
dynamics of interactions, but not in the notation, just like in ordinary object-oriented 
programming.  
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Figure 12 Chemical vs. Process Calculi Notations 
 

On the left of Figure 12 we have a chemical description of a simple system of reactions, 
with a related (non-composition) Petri Nets description. On the right we have a process 
calculus description of the same system, with a related (compositional) description in terms of 
interacting automata (e.g., Statecharts [22] with sync pseudostates). Both kinds of descriptions 
can take into account stochastic reaction rates (k1,k2), and both can be mapped to the same 
stochastic model (Continuous-Time Markov Chains), but the descriptions themselves have 
different structural properties. From a simulation point of view, the left-hand-side approach 
leads to large sparse matrices of chemical species vs. chemical reactions, while the right-
hand-side approach leads to large multisets of interacting objects. 

7.3 Example: Viral Infection 

The example Figure 13 (adapted from [2], p.279) is the “algorithm” that a specific virus, the 
Semliki Forest virus, follows to replicate itself. It is a sequence of steps that involve the 
dynamic merging and splitting of compartments, the transport of materials, the operation of 
several proteins, and the  interpretation of genetic information. The algorithm is informally 
described in English below. A concise description in Brane Calculus is presented in [12], 
which encodes the infection process at high granularity, but in its entirety, including the 
membrane, protein, and gene aspects.  

A virus is too big to cross a cellular membrane. It can either punch its RNA through the 
membrane or, as in this example, it can enter a cell by utilizing standard cellular phagocytosis 
machinery. The virus consists of a capsid containing the viral RNA (the nucleocapsid). The 
nucleocapsid is surrounded by a membrane that is similar to the cellular membrane (in fact, it 
is obtained from it “on the way out”). This membrane is however enriched with a special 
protein that plays a crucial trick on the cellular machinery, as we shall see shortly.  
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Figure 13 Viral Replication 
 

Infection: The virus is brought into the cell by phagocytosis, wrapped in an additional 
membrane layer; this is part of a standard transport pathway into the cell. As part of that 
pathway, an endosome merges with the wrapped-up virus. At this point, usually, the 
endosome causes some reaction to happen in the material brought into the cell. In this case, 
though, the virus uses its special membrane protein to trigger an exocytosis step that deposits 
the naked nucleocapsid into the cytosol. The careful separation of internal and external 
substances that the cell usually maintains has now been subverted.  

Replication: The nucleocapsid is now in direct contact with the inner workings of the 
cell, and can begin doing damage. First, the nucleocapsid disassembles, depositing the viral 
RNA into the cytosol. This vRNA then follows three distinct paths. First it is replicated (either 
by cellular proteins, or by proteins that come with the capsid), to provide the vRNA for more 
copies of the virus. The vRNA is also translated into proteins, again by standard cellular 
machinery. The proteins forming the capsid are synthesized in the cytosol. The virus envelope 
protein is instead synthesized in the Endoplasmic Reticulum, and through various steps 
(through the Golgi apparatus) ends up lining transport vesicles that merge with the cellular 
membrane, along another standard transport pathway.  

Progeny: In the cytosol, the capsid proteins self-assemble and incorporate copies of the 
vRNA to form new nucleocapsids. The newly assembled nucleocapsids make contact with 
sections of the cellular membrane that are now lined with the viral envelope protein, and bud 
out to recreate the initial virus structure outside the cell. 

7.4 Summary 

The fundamental flavor of cellular machinery is: chemistry in the service of materials, energy, 
and information processing. The processing of energy and materials (e.g., in metabolic 
pathways) need not be emphasized here, rather we emphasize the processing of information, 
which is equally vital for survival and evolution [1]. Information processing tasks are 
distributed through a number of interacting abstract machines with wildly different 
architectures and principles of operation. 
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8 Outlook: Model Construction and Validation 
The biological systems to be described are massively concurrent, heterogeneous, and 
asynchronous: notoriously the hardest kinds of systems to cope with in programming. They 
have stochastic behavior and high resilience to drastic changes of environmental conditions. 
What organizational principles make these systems work reliably, and what conditions make 
them fail? These are the questions that computational modeling needs to answer. 

There are two main aspects to modeling biological systems. Model construction, requires 
first an understanding of the principles of operation. This is what we have largely been 
discussing here: understanding the abstract machines of molecular biology should lead us to 
formal notations that one can use to build (large, complex) biological models. But then there 
is model validation: a good scientific model has to be verified or falsified through postdiction 
and prediction. We briefly list different techniques that are useful for model validation, once a 
specific model has been written up in a specific precise notation. 

Stochastic simulation of biochemical systems is a common technique, typically based on 
the physically well-characterized Gillespie algorithm [21], which originally was devised for 
reaction-oriented descriptions. The same algorithm can be used also for component-oriented 
(compositional) descriptions with a dynamically unbounded set of chemical species [42]. 
Stochastic simulation is particularly effective for systems with a relatively low number of 
interactions of any given kind, as is frequently the case in cellular-scale systems. It produces a 
single (high-likelihood) trace of the system for each run. It frequently reveals behavior that is 
difficult to anticipate, and that may not even correspond to continuous deterministic 
approximations [32]. It can be quantitatively compared with experiments. 

Static analysis techniques of the kind common in programming can be applied to the 
description of biological systems [38]. Control-flow analysis and mobility analysis can reveal 
subsystems that cannot interact [7][39]. Causality analysis can reconstruct the familiar 
network diagrams from process description [11]. Abstract interpretation can be used to study 
specific facets of a complex model [37], including probabilistic aspects [17]. 

Modelchecking is now used routinely in the analysis of hardware and software systems 
that have huge state spaces; it is based on the state and transition model we emphasized 
during the discussion of abstract machines. Modelchecking consists of a model description 
language for building models, a query language for asking questions about models (typically 
temporal logic), and an efficient state exploration engine. The basic technology is very 
advanced, and is beginning to be applied to descriptions of biological systems too, in various 
flavors. Temporal modelchecking asks qualitative questions such as whether the systems can 
reach a certain state (and how), or whether a state is a necessary checkpoint for reaching 
another state [9][20]. Quantitative modelchecking asks quantitative questions about, e.g., 
whether a certain concentration can eventually equal or double some other concentration in 
some state [4][6]. Stochastic modelchecking, based, e.g., on discrete or continuous-time 
Markov chain models, can ask questions about the probability of reaching a given state [30]. 

Formal reasoning is the most powerful and hardest technique to use, but already there is 
a long tradition of building tools for verifying properties of concurrent systems. Typical 
activities in this area are checking behavioral equivalence between different systems, or 
between different abstraction levels of the same system, including now biological systems 
[10][5]. 

While computational approaches to biology and other sciences are now common, several 
of the techniques outlined above are unique to computer science and virtually unknown in 
other fields; hopefully they will bring useful tools and perspectives to biology. 
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9 Conclusion 
Many aspects of biological organization are more akin to discrete hardware and software 
systems than to continuous systems, both in hierarchical complexity and in algorithmic-like 
information-driven behavior. These aspects need to be reflected in the modeling approaches 
and in the notations used to describe such systems, in order to make sense of the rapidly 
accumulating experimental data.  
 

“The data are accumulating and the computers are humming, what we are lacking are 
the words, the grammar and the syntax of a new language…”  
 Dennis Bray (TIBS 22(9):325-326, 1997) 

  

“The most advanced tools for computer process description seem to be also the best 
tools for the description of biomolecular systems.” 
 Ehud Shapiro (Biomolecular Processes as Concurrent Computation, Lecture Notes, 2001) 

  

“Although the road ahead is long and winding, it leads to a future where biology and 
medicine are transformed into precision engineering.” 
 Hiroaki Kitano (Nature 420:206-210, 2002) 

  

“The problem of biology is not to stand aghast at the complexity but to conquer it.” 
 Sydney Brenner (Interview, Discover Vol. 25 No. 04, April 2004) 
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